Anammox may promote the anaerobic oxidation of methane (AOM) in cold wetland soils Heather Townsend¹, F. Rezanezhad¹, S. Slowinski¹, C. Smeaton², M. Macrae³, C. Parsons⁴, K. Webster⁵, and P. Van Cappellen¹ ¹Ecohydrology Research Group, University of Waterloo, ²School of Science and the Environment, Memorial University of Waterloo, ³Biogeochemistry Lab, University of Waterloo, ⁴Environment and Climate Change Canada, Sault Ste. Marie, Canada ### Winter Soil Biogeochemistry Snow and frozen soil exert critical control over soil biogeochemistry - o Reducing or **halting atmospheric gas exchange** and water inputs - Rising temperatures will reduce snowcover and create colder soils - o Affecting soil biogeochemical cycles via enhanced freezing, perpetuating anoxic conditions - Cold region soils are seasonally anoxic and closed to the atmosphere - O Build-up of "biogeochemical end-products" **reduced** e⁻ **acceptors** (e.g., Fe²⁺, H₂S, and NH₄⁺) and methane (CH₄) can be **recycled in future reactions** - o Increased potential for the anaerobic methane oxidation (AOM) - This research aims to understand the temporal effects of closed and anoxic conditions on soil carbon and nitrogen cycles in cold wetlands #### Materials & Methods - o Organic soil samples were collected from a swamp located at the Turkey Lakes Watershed near Sault Ste. Marie, Ontario - \circ Controlled concentrations of sulfate (SO₄²⁻), nitrate (NO₃⁻), and glucose were supplied to different soil treatments # Biogeochemical Trends o Three biogeochemical Phases (I, II, III) were observed over the incubation: Denitrification (I), Sulfate Reduction & Methanogenesis (II), AOM (III) + e⁻ Acceptors + Glucose **AOM** in Phase III significantly **increases pH** without an obvious e^- acceptor for oxidation ■ pH ■ NO_3^- ● SO_4^{-2} ▲ NO_2^- ◆ N_2O ▲ $Mn_{(aq)}$ ■ $Fe_{(aq)}$ ● CH_4 ## **Anammox + Mn Reduction?** + e⁻ Acceptors + Glucose + e⁻ Acceptors + Glucose Phase I Phase III Brocadiae OM190 Nitrospira bacteriap25 Geobacteraceae Methylomonaceae Methyloligellaceae - Increasing or NO_3^- and nitrite (NO_2^-) concentrations occur alongside decreasing ammonium (NH₄⁺) suggesting complete anammox - \circ Manganese (Mn) Oxides are the only e^- acceptor energetically capable of anammox to NO₃ - Increasing Relative Abundances of Mn-reducers (Geobacter-) and methanotrophs (Methyl-) - o Changes in pH may affect future reaction (e.g., AOM, anammox) thermodynamics within the experiment - Producing unfavourable conditions in poorly buffered environments **Anammox** ### Conclusions - A microbial consortium may couple Mn-oxide reduction with anammox, regenerating NO₃ - \circ Produced NO_3^- is used in future reactions, including AOM or dissimilatory NO₃⁻ reduction, recycling Fe or S - o pH rise from AOM may reduce the energy yields of CH₄ and NH₄⁺ oxidation in a negative feedback loop - AOM and anammox are potentially autotrophic, providing a small **seasonal carbon sink** ### Acknowledgements Funding for this research has been provided through the NSERC Strategic Partnership Grant (STPGP494652-16) and Winter Soil Processes in Transition project funded by Global Water Futures. We would like to acknowledge Marianne Vandergriendt, Alison Mao, and Carly Kemp for their assistance, and contributions to this project.